i< g ’ Example of Remotely accesible . Co-funded by the
AL el Lab S Erasmus+ Programme

O . of the European Union
Implementation of Remote Lab setups
\ ()« Server side is Linux; Client can be Windows/Linux (single sw package need to be installed)
without Public IP and behind a firewall/router, at your premises, based on reverse SSH tunnels
Somewhat similar to AnyDesk, Teamviewer, but completely open source and under our control
Remote desktop access, data sharing, remote desktop support via free version of NX3 mmmmmm=sy Q)

: Dell R720
server

1 (ubuntu 18.04)

" X2go server

A R R R R R K

7
D)

0 0O 4 Q A
O 2go client

Windows or Linux

studen@)

Optional fpga
programming

oy

=

X2go client
Windows or Linux Ssh

y—

ssh, TCP app o RedPitava
“bastion” gateway socket, NFS, : v : > y

@) X2go client
Windows or Linux
I M
Assumptions and the goal
~Yntil recently, in many cases, and especially in pre-COVID crisis period, students were coming to Campus laboratory
and doing experiments, being physically present by the setup. .

In many cases, practical exercise were prepared and based on Linux and Windows x86 boxes with additional
aparatus connected, e.g. using RPi3/4, Arduino framework, LabView, custom prepared scripts, applications.
We have selected RedPitaya platform, that can emulate 2 channel signal generator, and 2 channel osciloscope,
based on Xilinx Zynq chip, with full embedded Linux support, 12C and SPI control oob, and FPGA programmability.
It;%ﬁbrovide programmatically controlled signal input, and also acquisition of response for further analysis and

Detailed information on setup preparation/on
both client and server side are extension/of
guidelines provided in WebLab documents
provided last year ~

comparison against simulation.

y o

\\ RELAB - A /
] ’ Analog circuits simulation digital twin) Co-funded by the

SR Erasmus+ Programme
* o *

of the European Union

Digital twin model of some analog electrical circuits: Example of LC filters

I

Goal of the experiment:
\ «interactively compare analog circuit simulation and physical setup behavior PR

 Identification of unknown model parameters by interactively expanding virtual model and measuring difference in circuit response.
"o () + Realworld L and C components are represented with more complex network with unknown parameters (e.g. for L, series resistance & parallel, parasitic capacitor).

Method:
* Modify circuit structure, provide signal input and measure response.
« Same stiumuli is applied on real-life model and virtual model of AC using LTSpice package.
* Similarity metric of response of physical setup and simulated environment is also automatically calculated.
* Physical network parameters (R,L,C) are manually modified for the sake of simplicity
« Two breadboards with different topologies and few different values of capacitors and toroid inductors offer variability in experiments

* We can also fully automate control side of the setup (parameter modification), over I12C (using circuits PCM9548/9534):
* Relays, digital POT (MPT4017/18/19), capacitor (NCD2400M) over I12C, directly from RedPitaya (example schematic provided for reference)

Y SW setup proxy bridge server:
* Linux, Ubuntu/Debian; SSH stack enabled; X2GO server
» User space packages: Octave; Wine package (for Windows emulation); Ltspice XVII installed on Linux;

* Python scripts to interact with LTSpice and WebApp.
e * Web App access is stretch goal and WIP
* NGINX WebServer + Python Flask Web App for remote access,

I

~ * Providing API to Python LTSpice scripts, and communication with RP over TCP sockets (optionally change parameters over 12C) —~
W setup lab server:
*~RedPitaya C or Python code, to run acquisition and optionally I12C peripherals J
/ Access to RedPitaya via SSH or Web session.
* RedPitaya generator/acquistion application communicates with backend over TCP socket; optionally sharing via NFS O
qardware requirements (BoM): /

| Few toroids/inductors created with winding, capacitors and resistors (through hole), breadboard.

. Ié(?ﬂneter (optional)
. dPitaya 125-14/122-16 (redpitaya.com) 'I‘

\ ’ RELAB - /
] Analog circuits simulation digital twin Co-funded by the
o Experiment flow Erasmus+ Programme

of the European Union

After installation setup, start LTSpice in wine:

1) In LTSpice, modifying existing or create sch of electrical circuit to be simulated
\ 2) After running simulation and modifying parameters, save in .asc format

/ ~ (£ lerarchy_View_Smulate Tools Window_Help
HD X0 QRAQAR R HEE(IREMSELSB2+3 XDVQD Cimiihep
e |

®

.acdec 1001 4.692Meg 12.15Meg 2nd Order Butterworth Bandpass
Direct-Coupled, Shunt Capacitor
-net I(RL) V1 Lower Cutoff Freq. = 7.5 MHz; Upper Cutoff Freq. = 7.7 MHz
rf-tools.com | Nov 21 2022 17:36
ﬁ Inductor Q Factor = 230 at 8.000MHz
) c2 L2 c4 L4 T
147.00 G, 147.00 330,
Cl (cz]
AC1l0 RL
Rser=50.00 I-GSOH I-ISUH 50

exec wine '/home/username/.wine/drive_c/Program Files (x86)/LTC/LTspiceXVII/XVIIx86.exe' 'filterl.asc'

* Design filter model or take one of few
supplied examples

* Measure R, L, C values using LCR meter. If
CR only is available estimate L based on
number of turns.

* Do necessary assembly/solderingAttach to

RedPitaya, OUT1->DUT->IN1

.
3 o
>

Raw measurements (DAC samples)
Raw measurements (ADC samples)

Analog circuits simulation digital twin Co-funded by the
- - Erasmus+ Programme

of the European Union

\ \\ [RELAB - Setup for A /

LTspice XVII - filteri.asc

RN Cic Edit Hierarchy View Smulate Tools Window Help

PDEEHTFL) RAQUR £ ERE s b2Eg DS LT £ 3 2

. fitterL asc | §7 ritterLraw |

|
AAAAAAVAA

[\ it aia et

13

6.092MHz 6.492MHz z 7.292MHz__ 7.692MHz 8.

ac dec 1001 5632Meq 10.15Meqg 2nd Order Butterworth Bandpass
Direct-Coupled. Shunt Capacitor

net I(RL) V1 Lower Cutoff Freq. = 7.5 MHz: Upper Cutoff Freq. = 7.7 MHz
rf-tools.com | Nov 21 2022 17:36

Inductor Q Factor = 230 at 8.000MHz

LTSpice XVII
Custom PyScripts
For WebApp:

* Nginx

* Flask WebApp

AC Analysis o

10088

20048

30.008 1

0,008

50.0d5

50.0d5 1

70.0d8 .

GOOOMHz 7.000MHz 800DMHz 9.000MHz 10.000MHz

&3 HQ=

DUT
C filters of up to 5th order:
Change filter order by adding / removing L/C
Change number of turns for L change

By stretching and squeezing turns change L
Solder different capacitors

LTSpice (Windows app only) running in
Wine, Ubuntu. Linux. PyLTSpice scripts
can interract with LTSpice

Optigpe}l IﬁC wiringI f(t))z CLéstor(rjl ECIIB board with Students client station:
@) igitally controlable C and R elements. . .
/ o Windows or Linux

\ REIABD

RELAB - Code snippets for Digital twin of
Analog circuits simulation

Co-funded by the

from PyLTSpice.LTSpice_RawRead import LTSpiceRawRead

from matplotlib import pyplot as plt
infGYrt numpy as np

lmport os

import subprocess

1tfdclist = './filterl.asc'
cmd'= ['wine',
cmd.append(ltnetlist)
g@Dprocess.call (cmd, shell=False)
LTR = LTSpiceRawRead ("filterl.raw")
print (LTR.get_trace_names())

print (LTR.get_raw_property())

TRF = LTR.get_trace("V(vout)")
X = LTR.get_trace ("frequency")
fig, ax plt.subplots ()

ax.plot (np.real (x) / 1000000,

'/home/relab/.wine/drive_c/Program Files

Code snippets:

Erasmus+ Programme
of the European Union

* LTSpice python driven simulation (x86)
» Start from circuit entered in Ltspice and saved as filterl.asc
* Change parameters in LTspice, save filterl.asc, run python script

Integrated Flask WebApp is exposing sliders for changing parameters inside selected few topologies

* Red Pitaya signal generator and acquisition

(x86) /LTC/LTspiceXVII/XVIIx86.exe',

'-Run -b -netlist']

/* Red Pitaya C API example Acquiring a signal from a buffer
* This application acquires a signal on a specific channel */

#include
#include
#include
#include
#include
#include

int main(int argc,
float freqg = 5500000;

20. O*np. lOglO (np.abs (TRF))) uint32_t buff_size = 16384;

ax.xaxis.set_major_formatter (plt.FormatStrFormatter ('$6.3fMHz"))
ax.yaxis.set_major_formatter (plt.FormatStrFormatter ('%4.1fdB'"))
fig.canvas.manager.set_window_title ('AC Analysis')

plt.grid()

plt.show()

-10.0dB -

-20.0dB -

-30.0dB -

-40.0dB -

-50.0dB

-60.0dB

-70.0dB -

T T T
7.000MHz 8.000MHz 9.000MHz

/ ales]¥azl 8l

T
6.000MHz

Extract
Line 72:
Extract
Line 73:
Extract
Line 74:
Extract
Line 75:
Extract
Line 76:
Extract
Line 77:
Extract
Line 78:
Extract
Line 79:

Line 80:

Line 81:
Extract:
Line 82:
Extract:
Line 83:
Extract:
Line 84:
Extract:
Line 85:
Extract:
Line 86:
Extract:
Line 87:

:-15.645706 freq= 8720000.0
7.

[71] FREQ= 8 - "

£-17.041282 freq| %) Figure 1 (Da
[72] FREQ= 8749

:-18.456401 freq=

[73] FREQ= 8760)

:-19.873725 freqs

[74] FREQ= 8780 2%

:-21.274581 fregH| -10 T AN I

[75] FREQ= 8800 / \
:-22.648312 freqs] -15 - + N

[76] FREQ= 8820 o 1
:-23.986784 freq- <55 i \

[77] FREQ= 8840 I %
:-25.297169 freqs | i A

[78] FREQ= 8866 =23 7 Y

Extract:-26.564248 freqs / \
[79] FREQ= 8880 -30 a - -
Extract:-27.788166 freq-| ' N

[80] FREQ= 8900 _35 P2 N\
-28.969682 freqs 7 \

[81] FREQ= 8920 ,/

-30.110437 freq=| —40 Pl e

[82] FREQ= 8940| o We
-31.217840 freqs —a5 = =
[83] FREQ= 8960| = ha .
-32.278034 freqs

[84] FREQ= 8980 7500 8000 8500 9000 9500
-33.300447 freq

[85] FREQ= 9000

-34.290943 freqs —

(36)_rrea= o020 A €/ Q= @)

-35.232545 freq-

Extract:
Line 88:
Extract:

000
Line 89: [88] FREQ= 9060000.0

[87] FREQ= 9040000.0

-36.133132 freg=

RMS:0.006507 (-35.23254562dB)10.000000 raw=-43.732546
9060

.0
RMS:0.005866 (-36.13313268dB)10.000000 raw=-44.633133

or Laboratory Support in Engineering and Natural Science

float *buff =

/* Print error,
if (rp_Init ()

for(int a = 0;
{

<stdio.h>
<stdlib.h>
<string.h>
<unistd.h>
<math.h>
"rp.h"

char **argv) {

(float *)malloc (buff_size * sizeof (floa

if rp_Init ()
I'= RP_OK) {
fprintf (stderr,

function failed */

"Rp api init failed!\n");

a < 150; a++)

printf ("\n[%2d]
memset (buff, O,

FREQ=%10.1f ", a, freq)

7
buff_size * sizeof (float));

rp_GenReset () ;

rp_GenFreq(RP_CH_1, freq);

rp_GenAmp (RP_CH_1, 0.03);

rp_GenWaveform (RP_CH_1, RP_WAVEFORM_SINE) ;
rp_GenOutEnable (RP_CH_1);

freq += 20000;

rp_AcgReset () ;
rp_AcgSetDecimation (RP_DEC_1);
rp_AcgSetTriggerDelay (0);

rp_AcgStart () ;

rp_AcgGetOldestDataV(RP_CH_1, &buff_size, buff);
printf (" Calc RMS:"); fflush(stdout);

int i;

double rms_tot = 0.0;

for(i = 0; i < buff_size; i++){

rms_tot += (double)buff[i] * (double)buff[i];
}
rms_tot = sqrt(rms_tot / (double)buff_size);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

