
Repository of Open Educational Resources for Laboratory Support in Engineering and Natural Science

VPS
Public Linux

Server
(Public Cloud

instance, Ubuntu)

Dell R720
server

(ubuntu 18.04)
X2go server

Asus Tower
Server

(ubuntu 20.04)
X2go serverro

ut
er

X2go client
Windows or Linux

X2go client
Windows or Linux

X2go client
Windows or Linux

students

Implementation of Remote Lab setups
● Server side is Linux; Client can be Windows/Linux (single sw package need to be installed)
● without Public IP and behind a firewall/router, at your premises, based on reverse SSH tunnels
● Somewhat similar to AnyDesk, Teamviewer, but completely open source and under our control
● Remote desktop access, data sharing, remote desktop support via free version of NX3

Assumptions and the goal
Until recently, in many cases, and especially in pre-COVID crisis period, students were coming to Campus laboratory
and doing experiments, being physically present by the setup.
In many cases, practical exercise were prepared and based on Linux and Windows x86 boxes with additional
aparatus connected, e.g. using RPi3/4, Arduino framework, LabView, custom prepared scripts, applications.
We have selected RedPitaya platform, that can emulate 2 channel signal generator, and 2 channel osciloscope,
based on Xilinx Zynq chip, with full embedded Linux support, I2C and SPI control oob, and FPGA programmability.
It can provide programmatically controlled signal input, and also acquisition of response for further analysis and
comparison against simulation.

RELAB –
Example of Remotely accesible

Lab

Ssh
tunnel

Ssh
tunnel

Ssh
tunnel

Ssh
tunnel

Ssh
tunnel

RedPitaya

Detailed information on setup preparation on
both client and server side are extension of
guidelines provided in WebLab documents
provided last year

Optional fpga
programming

ssh, TCP app
socket, NFS,
html5

ubuntu

“bastion” gateway

Repository of Open Educational Resources for Laboratory Support in Engineering and Natural Science

Digital twin model of some analog electrical circuits: Example of LC filters

Goal of the experiment:
● Interactively compare analog circuit simulation and physical setup behavior
● Identification of unknown model parameters by interactively expanding virtual model and measuring difference in circuit response.

● Real world L and C components are represented with more complex network with unknown parameters (e.g. for L, series resistance & parallel, parasitic capacitor).

Method:
● Modify circuit structure, provide signal input and measure response.

● Same stiumuli is applied on real-life model and virtual model of AC using LTSpice package.
● Similarity metric of response of physical setup and simulated environment is also automatically calculated.

● Physical network parameters (R,L,C) are manually modified for the sake of simplicity
● Two breadboards with different topologies and few different values of capacitors and toroid inductors offer variability in experiments
● We can also fully automate control side of the setup (parameter modification), over I2C (using circuits PCM9548/9534):

● Relays, digital POT (MPT4017/18/19), capacitor (NCD2400M) over I2C, directly from RedPitaya (example schematic provided for reference)

SW setup proxy bridge server:
● Linux, Ubuntu/Debian; SSH stack enabled; X2GO server
● User space packages: Octave; Wine package (for Windows emulation); Ltspice XVII installed on Linux;
● Python scripts to interact with LTSpice and WebApp.
● Web App access is stretch goal and WIP

● NGINX WebServer + Python Flask Web App for remote access,
● Providing API to Python LTSpice scripts, and communication with RP over TCP sockets (optionally change parameters over I2C)

SW setup lab server:
● RedPitaya C or Python code, to run acquisition and optionally I2C peripherals
● Access to RedPitaya via SSH or Web session.

● RedPitaya generator/acquistion application communicates with backend over TCP socket; optionally sharing via NFS
Hardware requirements (BoM):
● Few toroids/inductors created with winding, capacitors and resistors (through hole), breadboard.
● LCR meter (optional)
● RedPitaya 125-14/122-16 (redpitaya.com)

RELAB –
Analog circuits simulation digital twin

Repository of Open Educational Resources for Laboratory Support in Engineering and Natural Science

RELAB –
Analog circuits simulation digital twin

Experiment flow

After installation setup, start LTSpice in wine:
exec wine '/home/username/.wine/drive_c/Program Files (x86)/LTC/LTspiceXVII/XVIIx86.exe' 'filter1.asc'

1) In LTSpice, modifying existing or create sch of electrical circuit to be simulated
2) After running simulation and modifying parameters, save in .asc format

● Design filter model or take one of few
supplied examples

● Measure R, L, C values using LCR meter. If
CR only is available estimate L based on
number of turns.

● Do necessary assembly/solderingAttach to
RedPitaya, OUT1->DUT->IN1

3) source ltvenv/bin/activate; python3 ./myltr.py, to simulate circuit in
batch mode using PyLTSpice, plot simulated response

4) Initiate measurement of physical setup (communicate with RP)
5) Calculate similarity metrics with response from physical setup. If

match within createria - break
6) Modify parameters (not topology) with sliders
7) Goto 5

filter.asc

RP C-program:
1) Wait for request
2) Initiate signal generation, at Fstart
3) Generate sine at Fn
4) Acquire signal samples (after passing through filter)
5) Increment Fn
6) Goto 3, until Fn riches Fend
7) Send RMS response back to requestor

response

R
aw

 m
ea

su
re

m
en

ts
 (

A
D

C
 s

a
m

p
le

s)

R
aw

 m
ea

su
re

m
en

ts
 (

D
A

C
 s

a
m

p
le

s)

request

Repository of Open Educational Resources for Laboratory Support in Engineering and Natural Science

SERVER:
● Ubuntu
● X2go
● octave
● Wine
● LTSpice XVII
● Custom PyScripts
● For WebApp:

● Nginx
● Flask WebApp
●

RELAB – Setup for
Analog circuits simulation digital twin

LTSpice (Windows app only) running in
Wine, Ubuntu. Linux. PyLTSpice scripts
can interract with LTSpice

Students client station:
Windows or Linux

DUT
LC filters of up to 5th order:
● Change filter order by adding / removing L/C
● Change number of turns for L change
● By stretching and squeezing turns change L
● Solder different capacitors

Optional I2C wiring for custom PCB board with
 digitally controlable C and R elements.

Repository of Open Educational Resources for Laboratory Support in Engineering and Natural Science

from PyLTSpice.LTSpice_RawRead import LTSpiceRawRead
from matplotlib import pyplot as plt
import numpy as np
import os
import subprocess

ltnetlist = './filter1.asc'
cmd = ['wine', '/home/relab/.wine/drive_c/Program Files (x86)/LTC/LTspiceXVII/XVIIx86.exe', '-Run -b -netlist']
cmd.append(ltnetlist)
subprocess.call(cmd, shell=False)

LTR = LTSpiceRawRead("filter1.raw")

print(LTR.get_trace_names())
print(LTR.get_raw_property())

TRF = LTR.get_trace("V(vout)")
x = LTR.get_trace("frequency")
fig, ax = plt.subplots()
ax.plot(np.real(x) / 1000000, 20.0*np.log10(np.abs(TRF)))
ax.xaxis.set_major_formatter(plt.FormatStrFormatter('%6.3fMHz'))
ax.yaxis.set_major_formatter(plt.FormatStrFormatter('%4.1fdB'))
fig.canvas.manager.set_window_title('AC Analysis')
plt.grid()

plt.show()

/* Red Pitaya C API example Acquiring a signal from a buffer
 * This application acquires a signal on a specific channel */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <math.h>
#include "rp.h"

int main(int argc, char **argv){
 float freq = 5500000;
 uint32_t buff_size = 16384;
 float *buff = (float *)malloc(buff_size * sizeof(float));

 /* Print error, if rp_Init() function failed */
 if(rp_Init() != RP_OK){
 fprintf(stderr, "Rp api init failed!\n");
 }

 for(int a = 0; a < 150; a++)
 {
 printf("\n[%2d] FREQ=%10.1f ", a, freq);
 memset(buff, 0, buff_size * sizeof(float));

 rp_GenReset();
 rp_GenFreq(RP_CH_1, freq);
 rp_GenAmp(RP_CH_1, 0.03);
 rp_GenWaveform(RP_CH_1, RP_WAVEFORM_SINE);
 rp_GenOutEnable(RP_CH_1);

 freq += 20000;

 rp_AcqReset();
 rp_AcqSetDecimation(RP_DEC_1);
 rp_AcqSetTriggerDelay(0);

 rp_AcqStart();
 …
 rp_AcqGetOldestDataV(RP_CH_1, &buff_size, buff);
 printf(" Calc RMS:"); fflush(stdout);
 int i;
 double rms_tot = 0.0;
 for(i = 0; i < buff_size; i++){
 rms_tot += (double)buff[i] * (double)buff[i];
 }
 rms_tot = sqrt(rms_tot / (double)buff_size);

Code snippets:
● LTSpice python driven simulation (x86)

● Start from circuit entered in Ltspice and saved as filter1.asc
● Change parameters in LTspice, save filter1.asc, run python script
● Integrated Flask WebApp is exposing sliders for changing parameters inside selected few topologies

● Red Pitaya signal generator and acquisition

RELAB – Code snippets for Digital twin of
Analog circuits simulation

● Generate sine at different frequencies
● 150 steps
● Acquire
● Calculate RMS
● Store to NFS disk/send over TCPSimulated

LT Spice response
Plot (during tuning)

Plot of measured
RMS data

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

