23/10/2021

REIABD

E |O 6;: WEBLAB TUTORIAL OF TECHNICAL DESIGN

AND IMPLEMENTATION — SERVER
IMPLEMENTATION (LABVIEW)

S Co-funded by
NG the European Union

TUTORIAL OF TECHNICAL DESIGN AND IMPLEMENTATION —
INTRODUCTION

1. INTRODUCTION

A remote lab interface developed with EjsS can easily communicate with the lab hardware/software using
the Remote Interoperability Protocol (RIP). For this, two things are needed: EjsS’ RIP element (see the
Client implementation manual) and a RIP server implementation.

This manual describes how to use the RIP server implemented in LabVIEW. There is another one for the
Python implementation of the RIP server (see the Server implementation (Python) manual). The LabVIEW
implementation addressed in this document is extremely useful when the lab equipment is controlled, of
course, with LabVIEW Virtual Instruments (VIs). Chapter 2 of this manual explains how to configure the RIP
server and use it to publish your Vs as web services that can be consumed by EjsS applications with the
RIP element.

But first, you need to know where to get the LabVIEW implementation of the RIP Server. The software is
available at https://github.com/UNEDLabs/rip-labview-server. For the most advanced users (those who want
to do some development), a document presenting the specification of the Remote Interoperability Protocol
can be found here: https://github.com/UNEDLabs/rip-spec.

TUTORIAL OF TECHNICAL DESIGN AND IMPLEMENTATION —
INTRODUCTION

2. USING THE LABVIEW IMPLEMENTATION OF THE RIP SERVER

The LabVIEW implementation of the RIP server is distributed as a stand-alone project. Figure 1 shows the
files and directories contained in the project. The main file is the RIPWebSerice.lvproj and the place where
your Vs should be placed is inside the Private directory.

| 1 2 < | rip-labview-server - O X
P - nico Compartir Vista v E
:
1+ > Este equipo > Documentos > GitHub > rip-labview-server v O Buscar en rip-lab..

A e -
@ OneDrive - Personal Nombre Fecha de modificacion Tipo Tamafo

) .git 15/06/2019 16:42 Carpeta de archivos
@ OneDrive - UNED
BasicMethods 04/02/2019 10:47 Carpeta de archivos
= Este equipo Configuration 04/02/2019 10:47 Carpeta de archivos
¥ Descargas JsonRpc 15/06/2019 16:42 Carpeta de archivos
4| Documentos Private 04/02/2019 10:47 Carpeta de archivos
. SSESubVis 04/02/2019 10:47 Carpeta de archivos
Arduino
WebServicesSubVis 04/02/2019 10:47 Carpeta de archivos
Baldur's Gate Il - Enhanced Edit ..
| .gitignore 15/06/2019 16:42 Documento de texto
Blocs de notas de OneNote ~ CODE_OF_CONDUCT.md.txt 04/02/2019 10:47 Documento de texto
CyberLink —| CONTRIBUTING.md.txt 04/02/2019 10:47 Documento de texto
DyingLight |] LICENSE 09/02/2018 3:54 Archivo
FeedbackHub | LICENSE.txt 04/02/2019 10:47 Documento de texto
Frontier Developments = Metavi 04/02/2019 10:47 LabVIEW Instrument
GitHub @ POST.vi 04/02/2019 10:47 LabVIEW Instrument
= README.md 04/02/2019 10:47 Archivo MD
rip-labview-server N i .
|| RIPWebsService.aliases 04/02/2019 10:47 Archivo ALIASES
git || RIPWebService.lvlps 04/02/2019 10:47 Archivo LVLPS
BasicMethods %) RIPWebService.lvproj 04/02/2019 10:47 LabVIEW Project
Configuration ﬂ SSE.vi 04/02/2019 10:47 LabVIEW Instrument
JsonRpc = Startup.vi 04/02/2019 10:47 LabVIEW Instrument
Privata | >
20 elementos E‘ =

Figure 1. Files belonging to the LabVIEW project for the RIP server

The following sections will guide you on how to: 1) get your LabVIEW programs to work with RIP (2.1), 2)
start running the RIP server (2.2) and 3) test your LabVIEW programs actually work through RIP.

Before that, however, keep in mind you will need to have LabVIEW 2015 or later to make this RIP server
work.

21. Making your VIs work with the RIP server

To get your LabVIEW program published as a RIP web service, the first step is to copy your VI files to the
Private directory. Two VlIs are distributed with the RIP server by default for testing purposes:
JiL TestDoNotClose.vi and JiL TestOK.vi. You can either place your VI files directly in here or, even better,
create a subdirectory, named as your experiment, for example, and place them inside.

The second step is to provide the RIP server with the required information for it to actually know where the
Vls and what meta data information is associated to this control program. For this, go to the Configuration
directory and double-click on the Global_Configurations.vi file to open it in LabVIEW. Figure 2 shows and
example on how it should look. Here, let's ignore the elements at the top part of the VI and focus on the
Experiments list. This contains all experiments defined in the current RIP server. As said before, two
examples are provided for testing purposes. Accordingly, both are included in the list of experiments. Each
experiment is defined here through the fields listed in Table 1. While it is recommended to include information
in all of them, the only required ones are Name and Path. Also, the Cameras element may not be of any
importance at all if you are using ENLARGE to access your remote labs. In these cases, it is ENLARGE

TUTORIAL OF TECHNICAL DESIGN AND IMPLEMENTATION —
INTRODUCTION

who serves the information about the cameras used in the remote experience, not RIP, and it is in the
ENLARGE system (the myFrontier or myFrontier+ platforms) where cameras must be defined, not here.

[fd Global_Configurations.vi Front Panel * = X
File Edit View Project Operate Tools Window Help ‘D‘.
T5ptDialog Font |~ |[8~ [T~ |+][5~ | [+ search A [Pl
e [L L L L L LT T T LT T T T T LT] e —t—— ~
In order to save the configuration: 95000 Timeout_to abort_a_nonresponding_VI Bace ||
1) Go to menu Edit/Make Current Values Default . e e e e e
) Rl 14400000 Session_timeout Default Experience | TestOK
VI_Connections VI_Disconnections ‘;}‘uboi:‘ " Reconnect session fimeaut Access-Control-Allow-Origin]
= yees!
01 or""'" JFYr—
v 0 Y 0 3\ 200 SSE_frequency Access-Control-Allow-Credentials true
Experiments l“ Iﬂ
A
iy vo
Name [TestoK Path J3 . \PrivateViL TestOK.vi =]
Cameras
AUthORs . Chaos 5
d Base |httpi/cameralip Pat |/axis-cgi/mipg/ Nam | Camera 1
Keywords | Test
D&'ipfm"ITEstOK Base | httpy//cameralip Pat |/axis-cgi/mipg/ Nam | Camera 2
Name | TestNO_STOP Path 5. \Private\lil TestDoNotClose.vi =)
Cameras
AUENOTS . Chaos 0
d Base |http//comeralip Pat |/axis-cgi/mipg/ Nam | Camera 1
Keywords | Test
Description | TestDoNotClose Base |httpi//cameralip Pat |/axis-cgi/mipg/ Nam | Camers |
Name Path g (=4
o Cameras
v
< >

Figure 2. Configuration file to get your LabVIEW programs working with the RIP server

Table 1. Parameters that define a remote experience or experiment in RIP

Field Description

The ID or name given to the remote experience. This will be used to let

Name the client tell the RIP server which VI it wants to communicate with.

Path The pth (either absolute or relative, but relapivelis recommended) to
the main VI of your LabVIEW control program application.

Authors The authors of the LabVIEW program.

Keywords Some keywords related to the remote experience, lab setup, etc.

Description | A description of the remote experience, lab setup, etc.

A list of URLs and paths to the cameras used by the remote experience.

Cameras Not important if you are using ENLARGE.

If you add a new experiment, remember, as the Front Panel marks with red texts, to go to menu Edit and
click on the option Make Current Values Default before saving and closing the file.

2.2. Running the RIP server

Running the RIP server is extremely simple and works just like any other web service project in LabVIEW.
To run the RIP server, first double-click on the RIPWebSerice.lvproj and a window similar to the one in
Figure 3 will open. The right image in the figure shows how to start the web service to get the RIP server
started. The process consists on right-clicking on RIP in the tree of elements of the LabVIEW project and
then selecting Application Web Server > Publish. By detault, the web server is deployed in port 8080. Note
that if you click on Start instead of in Application Web Server > Publish, the server will run in debug mode
and will listen to port 8001 instead. Moreover, if you deploy the RIP server using the Publish option, the
system will automatically deploy it again every time the computer reinitializes.

TUTORIAL OF TECHNICAL DESIGN AND IMPLEMENTATION —
INTRODUCTION

A new window will then open showing the deployment progress (Figure 4). Once the process has finished,
click on the Close button to close the window. You can also mark the Close on successful completion to
avoid having to manually close the window every time you deploy the service.

Now, you are ready to start using your Vs through RIP.

Hed RIPWebService Ivproj * - Project Explorer - a X He RIPWebService.lvproj * - Project Explorer -] X
File Edit View Project Operate Tools Window Help File Edit View Project Operate Tools Window Help
EEEIE ECYEE R EEE IR X[k & o
ltems Files ltems Files
=&l Project: RIPWebService.lvproj =Bl Project: RIPWebService.vproj
= B = 8§ My Computer
i@ BasicMethods é+[@ BasicMethods
RIP] IR
% Dependenci | ﬂ. Start
pendencies 5 D
- %, Build Specifications L% By Sop
Add Public Content Folder...
Add Private Content Folder...
Publish Application Web Server
Unpublish
npudts I Find Project ltems...
Manage Web Server

Expand All
Collapse All

Remove from Project

Rename... F2

Help...
Properties

Figure 3. RIP server web service LabVIEW project

i Deployment Progress o x

Deployment Status

Initializing...
Calculating dependencies..
Checking items for conflicts. This operation could take a while...

Deployment Progress
-

[Close on successful completion oo Cancdl

Figure 4. Deployment progress window

2.3. Testing your LabVIEW program is working with the RIP server

Before testing your LabVIEW program, first test if the RIP serer is actually running. For that, open your web
browser and enter this URL: http://localhost:8080/RIP. You should see something like Figure 5.

@ localhost8080/RIP x o+ - X

<« C 0 ® localhost8080/RIP * BEOORBO ¥ «xoa @ :

{"experiences”:{"list":[{"id":"TestoK"},{"id":"TestNO_STOP"}], "methods": [{"url":"127.0.0.1:8080/RIP", "type": "GET","description": "Retrieves information (variables and methods) of the experiences in
the server”,"params”:[{"name": "Accept”, “required": "no", "location": "header”, "value": "application/json"},
{"name": "expld", "required":"no", "location": "query", "type": "string"}], "returns": "application/json", "example": {"url": "127.0.0.1:8080/RIP?expld=TestOK"}}1}}

Figure 5. Testing the RIP server

If you get a response from the RIP server in the form of a JSON, then your RIP server is up and running.
Not only that, if you already modified the Global_Configuration.vi fille to include information about your
remote experiment, you should see information about it in the received JSON structure. Indeed, looking at
Figure 5 we can see that the RIP server is sending us information about the two default experiences: TestOK
and TestNO_STOP. If you prefer, you can use a JSON parser to get a better view of the contents. There
are online JSON parsers for this.

TUTORIAL OF TECHNICAL DESIGN AND IMPLEMENTATION —

INTRODUCTION

Now let's see if RIP is able to communicate with one of the default LabVIEW programs; for example, the
one associated to the TestOK identifier. Type the following in your web browser navigation bar:
http://localhost:8080/RIP?explD=TestOK. The web browser should now display something similar to Figure

6.

@ localhost8080/RIP?expID=TestO' X +

<« C 0 @ localhost:8080/RIP?explD=TestOK

nf", "max": "Inf", "pr 0" "tyl
i"Subscribes to an SSE to get regular updates on the servers' variables”, params :
XpId”, "required”: "yes, "location”: "query”, "type”:"string"},

array”, "subtype”: returns”:"text/event-strean”, example H{"ur 27.0.0.1:8080/RIP/SSE2expId=TestoK"}},
ends a request to retrieve the value of one or more servers' variables on demand”,"parans”:

ontent-Type”, "required”: "yes"," eader”, ppll(atlon/json 4

location”: "body", "val
of variables ta be

,"required"
riables", "requir

"example”:
stOK", [“varl”,"var2"]], "id

rray”, "sul
+1:8080/RIP/POS 1
p://cameral_ip/axis

{"url":"http: //canera2_ip/axis-
,"location”: "query", "type":"string"},
ideo/x-motion-

147483648, "max" : "2147483647", "precision”: "1"},

'Camera
"location
des(rlptlo

"string","location
of variables ", "subtype":"string"},

nt","location”: "body")], returns :"application/json","example":
,"method”:"set", "params”: ["TestoK", ["varl", "var2"],

i“Experience id",
:"mixed"}],"location” body }.{"name":
" "application/Json”, "Content-Type": appl)catlun/]sun 3, "bod

8080/RIP/POST", "headers”

[*vali®, "vala ":"1"} I}

Figure 6. Testing the RIP server

Again, a JSON parser helps a lot to visualize and understand the information contained in the received
JSON. Also, you can read the RIP specification to get a better idea on what information provides each field:
https://github.com/UNEDLabs/rip-spec. However, this is only necessary if you intend to contribute to RIP

somehow with new developments.

Finally, you can test your own LabVIEW program and RIP-enabled remote experiment by typing
http://localhost:8080/RIP?explD=YourProgramID, where YourProgramID would be the name or ID you had
entered in the Name field in the Global_Configurations.vi file when you added your experiment.

