
[ESCRIBIR EL TÍTULO DEL DOCUMENTO] [Seleccionar
fecha]

 1

26/10/2021

IO 6: WEBLAB TUTORIAL OF TECHNICAL DESIGN
AND IMPLEMENTATION – SERVER
IMPLEMENTATION (PYTHON)

TUTORIAL OF TECHNICAL DESIGN AND IMPLEMENTATION –
INTRODUCTION

 2

1. INTRODUCTION

A remote lab interface developed with EjsS can easily communicate with the lab hardware/software using
the Remote Interoperability Protocol (RIP). For this, two things are needed: EjsS’ RIP element (see the
Client implementation manual) and a RIP server implementation.

This manual describes how to use the RIP server implemented in Python. There is another one for the
LabVIEW implementation of the RIP server (see the Server implementation (LabVIEW) manual). The
Python implementation addressed in this document is extremely useful when the lab equipment is controlled
with MATLAB/SIMULINK, Node.js, Arduino, Red Pitaya boards, etc. as it presents interfaces for all these
solutions. Chapter 2 of this manual explains how to configure the RIP server and use it to publish your
control programs as web services that can be consumed by EjsS applications with the RIP element.

But first, you need to know where to get the Python implementation of the RIP Server. The software is
available at https://github.com/UNEDLabs/rip-python-server. For the most advanced users (those who want
to do some development), a document presenting the specification of the Remote Interoperability Protocol
can be found here: https://github.com/UNEDLabs/rip-spec.

TUTORIAL OF TECHNICAL DESIGN AND IMPLEMENTATION –
INTRODUCTION

 3

2. USING THE PYTHON IMPLEMENTATION OF THE RIP SERVER

The Python implementation of the RIP Server is distributed as source code. You can get the most recent
version in the github repository (https://github.com/UNEDLabs/rip-python-server). Download it as a zip file
or, if you have git installed, clone the repository opening a terminal and typing the following command:

git clone https://github.com/UNEDLabs/rip-python-server

This guide assumes you have a Python 3 distribution already installed. If not, visit https://www.python.org/
and download a recent version.

The following sections will guide you on how to: 1) set up a Python virtual environment and check whether
your rip-python-server is working (2.1), 2) configure your application (2.2), and 3) extend the server to fit
your specific needs (2.3).

2.1. Setting up the virtual environment

The rip-server-python depends on the third-party libraries cherrypy, ujson. Depending on your application,
you also may need to install oct2py or MATLAB engine for Python. You can use your system wide installation
of Python, but we consider advantageous to use a virtual environment. Though there are several tools that
you can use, this guide uses virtualenv. You can install the tool with the following command:

pip3 install virtualenv

Then, create a new virtual environment:

virtualenv -p python3 venv

The -p python3 option is to ensure we are using the correct version, and venv is the folder where the
enviroment is stored. From now on remember you need to add the prefix venv/bin/ to execute the
commands inside the virtual environment, and not on your system installation. The following step is to install
the dependencies:

venv/bin/pip install cherrypy ujson

Depending on the implementation module you want to use for your application (Matlab, Arduino, etc.), you
may need to install other required modules. For example, for Arduino, you would also need to run:

venv/bin/pip install serial pyserial

The project’s code is configured for Matlab by default. Therefore, the following will not work unless you have
Matlab installed. To change the implementation module to a different one (Arduino, for example) see Section
2.2.

Finally, you can start the RIP server:

venv/bin/python3 App.py

The RIP server should start listening in port 8080. To check if it is actually working, open your browser and
enter the URL: http://localhost:8080/RIP. You should get a JSON response as shown in Figure 1. The
response contains the RIP server metadata describing the capabilities of the server and the experiences
hosted in it. You can read the RIP specification for implementation details.

TUTORIAL OF TECHNICAL DESIGN AND IMPLEMENTATION –
INTRODUCTION

 4

Figure 1. Testing the response of the RIP server.

2.2. Defining your application

The rip-python-server is roughly divided in two tiers: the first one that implements the RIP functionality, and
the second one that implements the access to the hardware. As the communication tier is usually not subject
to changes, to set up the server you only need to bind the application to a specific hardware implementation
in the configuration file AppConfig.py, and optionally to provide some extra information about the
experience hosted in the server: readables and writables exposed, authors, keywords, etc. You can find
some examples of how to do it in the folder config-examples. The following listing correspond to a
basic configuration for testing:

This file contains the configuration of the RIP server application.
config = {
 'server': {
 'host': '127.0.0.1',
 'port': 8080,
 },
 'control': {
 'impl_module': 'RIPGeneric',
 'info': {
 'name': 'Generic RIP',
 'description': 'A generic implementation of RIP',
 'authors': 'J. Chacon',
 'keywords': 'Raspberry PI, RIP',
 'readables': [{
 'name':'time',
 'description':'Server time in seconds',
 'type':'float',
 'min':'0',
 'max':'Inf',
 'precision':'0'
 }],
 'writables': []
 }
 }
}

Figure 2. RIP server experience configuration.

TUTORIAL OF TECHNICAL DESIGN AND IMPLEMENTATION –
INTRODUCTION

 5

You need to specify the following fields:

1. config.control.impl_module: contains the name of the module that implements the
hardware access. You can use any of the built-in implementations (RIPMatlab, RIPOctave,
…) or define your own control module, as will be explained later.

1. info: contains the definition of the experience, including the name of the experience, a short
description, authors and keywords and the list of readables, elements that can be read, and
writables, elements that can be written.

As before, you can launch the RIP server to test the new configuration, with the following command:

venv/bin/python3 App.py

The application will listen to the host and port specified in the configuration. Open a new browser window
and verify that the server is working.

2.3. Creating a new hardware interface.

In case the built-in hardware adapters do not fit your application, you can write your own code and integrate
it with the RIP server. To that end you will have to create a facade that expose your low-level hardware
access through the RIP API (see the RIP specification document). To make your task easier, the class
RIPGeneric (defined in rip/RIPGeneric.py) provides the RIP common functionality, so you can
subclass it to add your code. At a minimum, you need to do the following tasks:

2. Import the class RIPGeneric and any other library you need to use.
3. Create a subclass extending RIPGeneric.

a. Define the constructor __init__() with the initialization code.
b. Define how to read and write server objects, overriding the methods set and get.
c. Report the variables that should be sent in the periodic updates, overriding the method

getValuesToNotify.
4. The following listing contains an example of a minimum implementation provided as a template

(note that you need to put your code inside the folder ‘rip’). The code creates a server that provides
two readable objects: time, that return the server uptime, and random, that return a random
number, and one writable: seed, to modify the random generator seed. The server accepts SSE
connections and report random numbers periodically to the connected clients.

import random
from rip.RIPGeneric import RIPGeneric

class RIPAdapterTemplate(RIPGeneric):
 '''
 RIP Adapter Template
 '''

 def default_info(self):
 return {
 'name':'RIPAdapterTemplate',
 'description':'A template to extend RIP Generic',
 'authors':'J. Chacon',
 'keywords':'Adapter Template',
 'readables':[{
 'name':'time',
 'description':'Server time in seconds',
 'type':'float',
 'min':'0',
 'max':'Inf',
 'precision':'0',

TUTORIAL OF TECHNICAL DESIGN AND IMPLEMENTATION –
INTRODUCTION

 6

 },

 {
 'name':'random',
 'description':'Random value generator',
 'type':'float',
 'min':'0',
 'max':'1',
 'precision':'0'
 }],
 'writables': [{
 'name':'seed',
 'description':'Random seed',
 'type':'float',
 'min':'0',
 'max':'1',
 'precision':'0'
 }],
 }

Figure 3. RIPAdapterTemplate - Definition.

Code in Figure 3 is straightforward. First, it imports the standard package random that will be used to
generate the random numbers and RIPGeneric, and then it creates a class named
RIPAdapterTemplate that extends RIPGeneric. The method default_info provides the
default definition of the experience, that can be overridden in AppConfig.py.

 def set(self, expid, variables, values):
 '''
 How to write server variables
 '''
 n = len(variables)
 for i in range(n):
 try:
 n, v = variables[i], values[i]
 if v in self._get_writables():
 self.n = v
 except:
 pass

 @property
 def seed(self):
 return self._seed

 @seed.setter
 def seed(self, value):
 random.seed(value)

 def get(self, expid, variables):
 '''
 How to read server variables
 '''
 toReturn = {}
 n = len(variables)
 for i in range(n):
 name = variables[i]
 if v in self._get_readables():
 toReturn[name] = random.rand
 return toReturn

 @property
 def random(self):
 return random.random()

 @random.setter
 def random(self, value):
 pass

Figure 4. RIPAdapterTemplate – Methods get and set.

TUTORIAL OF TECHNICAL DESIGN AND IMPLEMENTATION –
INTRODUCTION

 7

Figure 4 shows the definition of methods set() and get(). These methods just check if the corresponding
variable is writable(readable) and writes(reads) the value. Using Python properties, the objects are mapped
to the methods provided by the package random.

Finally, the method getValuesToNotify returns the variables that will be reported periodically to the
user (using the SSE channel). The method should return a list where the first element is a list containing the
name of the variables notified and the second element is another list with the corresponding values.

 def preGetValuesToNotify(self):
 pass

 def getValuesToNotify(self):
 '''
 Variables to include in periodic SSE updates
 '''
 return [['time', 'random'], [self.sampler.lastTime(), self.random]]

 def postGetValuesToNotify(self):
 pass

Figure 5. RIPAdapterTemplate - Periodic updates.

Optionally, you can override the method preGetValuesToNotify and postGetValuesToNotify
in case you need to execute some actions before and after reading the variables, respectively. For example,
in an implementation that uses a MATLAB session, you can use preGetValuesToNotify to run some
MATLAB code that updates the workspace, prior to reading the values of the variables.

